Strong uniqueness of tangent flows at cylindrical singularities in the Ricci flow

Seminar: 
Geometry, Symmetry and Physics
Event time: 
Monday, October 20, 2025 - 3:45pm
Location: 
KT 906
Speaker: 
Hanbing Fang
Speaker affiliation: 
Stony Brook University
Event description: 

Abstract:  The uniqueness of tangent flows is central to understanding singularity formation in geometric flows. A foundational result of Colding and Minicozzi establishes this uniqueness at cylindrical singularities under the Type I assumption in the Ricci flow. In this talk, I will present a strong uniqueness result for cylindrical tangent flows at the first singular time. Our proof hinges on a Łojasiewicz inequality for the pointed $\mathcal{W}$-entropy, which is established under the assumption that the local geometry near the base point is close to a standard cylinder or its quotient. This is joint work with Yu Li.